Set Code:	T2
Booklet Code :	A

116. Ace	telyne in gas weld	ding p	rocess is obtain	ed from	n		-	
(1)	calcium carbona	ate		(2)	potassium carbo	nate	6	
(3)	potassium carbi	de		(4)	calcium carbide			
17. The	electron beam we	elding	can be carried	out in				
(1)	a shielded gas en	nviron	ment	(2)	open air			
(3)	vacuum			(4)	a pressurized in	ert ga	s chamber	
				ù.				
18. Foll	owing is the fusio	on typ	e welding proce	ess				
(1)	submerged are	weldir	ng process	(2)	explosive weldi	ng pr	ocess	
(3)	friction welding	g proc	ess	(4)	diffusion welding	ng pro	ocess	
			*					
19. In h	ot machining too	l is ma	ide of					
(1)	tungsten carbide	e		(2)	brass			
(3)	diamond	10	V. V.	(4)	stainless steel	58	5	
							74	
20. The	increase in hardr	ness di	ue to cold work	ing is c	alled		389	• 7
(1)	age hardening			(2)	induction harder	ning		
(3)	work hardening			(4)	flame hardening	g .	T	
121. In d	ie casting, machir	ning al	llowance is				92	
(1)	small	(2)	large	(3)	very large	(4)	not provided	
122. The	draft allowance	on cas	ting is generally	/	le*			
(1)	1 to 2 cm/m	(2)	2 to 5 cm/m	(3)	5 to 10 cm/m	(4)	10 to 15 cm/m	*:
		ū.			oo nawah lumma	on the	surface of a casti	ina is
123. A c		ich oc	curs near the ii	igates	as rough fumps o		e surface of a casti	ing is
kno	wii as							
kno	shift	(2)	sand wash	(3)	swell	(4)	scab	

Set Code :	T2
Booklet Code :	A

124.	(1)	and moulding process, cores are used to directional solidification to create the cavity in the casting	(2) (4)	filling the cavities with molten metal to minimize wastage of metal
125.		symbol used for butt resistance weld is		
	(1)	○ (2)	(3)	(4) □
126.	The	roughness grade symbol for the roughn	ess va	alue of 6.3 micrometers is
		N9 (2) N10		N 11 (4) N 12
127.	The	sand used for making cores is		
		green sand	(2)	dry sand
4	(3)	loam sand	(4)	oil sand •
128.	Stee	l balls for ball bearings are generally m	ade of	f .
	(1)	stainless steel	(2)	nodular cast iron
	(3)	free carbon steel	(4)	carbon chrome steel
	5.9			
129.	The	shock resistance of steel is increased by		
	(1)	nickel	(2)	chromium
	(3)	cobalt and molybdenum	(4)	nickel and chromium
130	The	force that cancels the effect of the force	e syste	em acting on the body is known as
150.		resultant	(2)	equilibrant
		neutral force	. ,	balancing force
131	In th	e method of joints for the analysis of	force	s in the members of the truss, the number of
131.	equi	librium equations, which are available a	t each	joint are
	(1)		(3)	TO THE PARTY OF TH
			0-A	(MEC)

Set Code :	T2
Booklet Code :	A

132.	The point in the stress versus strain diagram at which the cross sectional area of the test specimen starts decreasing is called									
	(1)	elastic limit			(2)	upper yield poir	nt			
	(3)	lower yield poin	nt .		(4)	ultimate stress j	point	8 8 %		
133.	33. A simply supported beam A of length 1 breadth b and depth d carries a central load W. Another beam of the same dimensions carries a central load equal to 2W. The deflection of beam B will be as that of A									
	(1)	one fourth	(2)	half	(3)	double	(4)	four times		
		¥, +°°								
134.	The	percentage elong	gation	s for a ductile ma	terial	are usually				
		less than 5%				10 to 15%	(4)	more than 15%		
135.	Inas	strained material	subje	cted to two norn				near stress is equal to		
	(1)	sum of the norm	nal str	esses	(2)	difference of th	e non	mal stresses		
	(3)	half the sum of	the no	ormal stresses	(4)	half the differen	ice of	the normal stresses		
	wher	same load is app	plied g	gradually.	35%			he strain energy stored four times		
4:	(1).	half	(2)	equal to	(3)	twice	(4)	Tour times		
137.		owder metallurgy ompressed in no		S			netals	in desired proportions		
	(1)	10 to 50 bar		.0	(2)	50 to 300 bar				
	(3)	310 to 650 bar			(4)	690 to 13750 b	ar			
138.	The	velocity of the be	elt of n	nass 'm' and tens	sion ''	Γ', for maximum	powe	r is		
	(1)	T/3	(2)	Tx3	(3)	$\sqrt{T}/3m$	(4)	$\sqrt{(3m/T)}$		
				**			50			

Set Code :	T2
Booklet Code :	

			22-A	(MEC)
	(3)	bevel gearing .	(4)	spiral gearing
	(1)	spur gearing	(2)	helical gearing
	knov	vn as		fts are connected by gears, the arrangement is
	11.0			4*
	(3)	remains same	(4)	increases exponentially
	(1)	increases linearly	(2)	decreases linearly
43.	Whe	n spring index increases, the value of	'Wahl's	stress factor
	(1)	5/8 (2) 6/8	(3)	7/8 (4) same as that
142.	In ro	oller chain the roller diameter is appro-	oximate	ely of the pitch.
	. •			
	(3)	$p = D \sin (180^{\circ}/T)$	(4)	$p = D \sin (360^{\circ}/T)$
	(1)	$p = D \sin (90^{\circ}/T)$	(2)	$p = D \sin (120^{\circ}/\Gamma)$
141.	The	relation between the pitch of the chain by	in (p) a	nd pitch circle diameter of the sprocket (D) is
	(4)	average tension of the tight and stac	k sides	of the belt
	(4)	sum of the tensions on the tight side average tension of the tight and slac		
	(2) (3)	tension in the slack side of the belt		-d-id-cd-lak
	(1)	tension in the tight side of the belt		
140.	this	tension is equal to the	to some	e tension known as initial tension. The value of
140	117L	om the help in a set of the set o		
	(3)	30 to 40°	(4)	50 to 60°
	(1)	10 to 20°	(2)	20 to 30°
139		included angle for the V-belt is usual	ly	16

145.	Pitcl	h point of a cam	is							
	(1)	a point on the p	itch cı	rve having m	inimum p	ressure a	ngle			
	(2)	a point on the pi	itch cı	rve having m	aximum j	pressure a	ngle			
	(3)	any point on the	pitch	curve						
	(4)	any point on the	e pitcl	i circle						
146.	The	ratio of hoop str	ess to	longitudinal s	stress is					
	(1)	0.5	(2)	1	(3)	2		(4)	3	. 1
147.	inne	shaft A is solid o r diameter 50 mr t B is	m and	both of them	are made					
			(2)		(3)	13/12		(4)	15/16	
148	Stea	dy flow energy e	anatio	on for a compi	ressor is					
110.		$w = h_2 - h_1$	-			$Q = h_1 - h_2$	#:	(4)	h ₁ =h ₂	
149.	Wor	k done in a flow	proce	ss is					8 2 2	
	(1)	pv	(2)	$\int pdv$	(3)	∫vdp	* 6	(4)	$-\int vdp$	
150.	The	hyperbolic proce	ess is g	governed by					ß	2
	(1)	Boyle's law	(2)	Charles' law	(3)	Avogadro	's law	(4)	Gay-Lussac la	ıw
151.	Reve	ersed Joule cycle	is kn	own as		*				
	(1)	Rankine cycle	nao ao	ž ±	(2)	Carnot cy	ycle			
	(3)	Bell-Coleman	cycle		(4)	Stirling o	ycle			

Set Code :	T2
Booklet Code :	A

152.	 For same heat input and compression ratio, the order of efficiency of Otto, Diesel and cycles is 								sel and Dual
	(1)	$\eta_{Otto} > \eta_{Diesel} > 1$	Dual	10	(2)	$\eta_{Otto} > \eta_{D}$	$_{\text{Dual}} > \eta_{\text{Diesel}}$		
	(3)	$\eta_{\text{Diesel}} > \eta_{\text{Dual}} > 1$	η _{Otto}				$> \eta_{Diesel}$		
153	The	condition for an	irrev	ersible cycl	e is				
100.		$\delta(\delta q/T) = 0$		$\delta(\delta q/T) <$		$\delta(\delta q/T)$	> 0 (4)	$\delta(\delta q/T) =$	∞
		1 222 222 4	1						
154.	The	isentropic proce	ss me	ans				3.	
	(1)	reversible proc	ess		(2)	adiabatic	process		
	(3)	reversible adial	oatic p	process	(4)	constant	entropy pro	cess	
155.	Dur	ing throttling pro	cess i	n an expans	ion valve o	f a refrige	rator .		
	(1)	enthalpy remain	ns con	stant but pr	essure decr	eases		7	
	(2)	pressure remain	is con	stant but en	thalpy decr	eases		2	
	(3)	constant enthal	py pro	ocess			SE SE		
	(4)	both pressure as	nd ent	halpy remai	ins constant	t .	2		
									x 2
156.		ixture of gas in ess. The change				10 To	upplying 10	0 kJ of hea	t during the
	(1)	0 kJ	(2)	5 kJ	(3)	100 kJ	. (4)	2000 kJ	
157.	The	effective inhibite	or of r	ore-ignition	is	v			
		alcohol	-	water	(3)	lead	(4)	diesel	
	(-)	,	(-)		. (0)	7,	()		
158.	In th	e expression of b	rake p	ower BP =	(2πnT/60),	for a four	stroke engir	ne 'n' should	l be taken as
	(1)	N	(2)	N/2	(3)	2N	(4)	N/4	
	wher	re, N = speed of t	he cra	ınk shaft in	rpm		35 983		e:
		•							
					100				

					Set Code : T2
					Booklet Code : A
159.	Hvd	rocarbon fuels of Paraffin family a	re being u	sed in S.I. engines, due	eto
	(1)	high cetane number	(2)	high octane number	
-	(3)	high heating value	(4)	high specific heat	
160.	The	flow ratio in case of Francis turbin	e varies fr	om	
	(1)	0.15 to 0.3 (2) 0.4 to 0.5	(3)	0.6 to 0.9 (4)	1 to 1.5
		¥/	, 8		
161.		ratio of the normal force of jet of w	ater on a p	late inclined at an ang	le of 60° as compared to
	that	when the plate is normal to jet, is			*
	(1)	1 (2) $\sqrt{3}/2$	(3)	1/2 (4)	0
					7
162.	In al	l reaction turbines, for maximum e	efficiency	×	
	(1)	the velocity of flow at outlet mus	t be zero		
	(2)	the velocity of flow at inlet must	be zero	ex. g	
	(3)	the velocity of whirl at entrance r	nust be ze	ro ·	
	(4)	the velocity of whirl at outlet mu	st be zero		
7					
163.	Cen	trifugal pumps dealing with mud ha	ave an imp	eller of the type	
	(1)	open		double suction	
	(3)	one-side shrouded	(4)	two-sides shrouded	20
	\- <i>\</i>		3 3 3		520 520
164.	Spe	cific speed of impulse turbine rang	es from		
	(1)	1000 to 2000 (2) 300 to 100		60 to 300 (4)	10 to 50
	(-)	,			
165.	Hyd	raulic ram is a pump which works	on the prin	ciple of	
	(1)	centrifugal action	(2)	reciprocating action	
	(3)	positive displacement action	(4)	inertia forces of water	er in the supply line

T2	Set Code :		94	
A	Booklet Code :			

				ks on		
	(1)	Diesel cycle	(2)	Otto cycle	(3)	Dual cycle (4) Ericssion cycle
167.	Whi	le drawing a hyd	lraulic	or pneumatic ci	ircuit,	it must begin with and end with
	(1)	pump, actuator			(2)	filter, flow control valve
	(3)	pressure gauge	, press	sure control valv	e (4)	service units, signaling elements
168.	The	pressure lines in	the w	et region of Mo	llier c	chart are straight because
		pressure remai				volume remains constant
		temperature re				enthalpy remains constant
	10.5	8				₩ 8 1
169.	A sa	fety valve mainl	y used	with locomotiv	e and	marine boilers is
100	(1)	lever safety val	ve		(2)	dead weight safety valve
	(3)	high steam and	low w	ater safety valve	(4)	spring loaded safety valve
						•
170.			he cap	acity of boilers,	the fee	ed water temperature and working pressure
	takeı		_			
2.4	(1)			mospheric press	ure	distribution of the state of th
	(2)	100°C and 1.1				
	(3)	50°C and norm	al atm	ospheric pressu	re	9 8
	(4)	50°C and 1 bar	pressi	ure	15	
171.	The	Mach number of	stean	flow at exit to a	conv	rergent divergent nozzle should be
	(1)	0	(2)	less than 1	(3)	more than 1 (4) equal to 1
						e (A)
		n the back pressile is said to be	ure of	a nozzle is belov	v the d	designed value of pressure at exit of nozzle
57	(1)	under expanding	g		(2)	over expanding
	(3)	choked			(4)	super saturated

Set Code :	T2
Booklet Code :	A

	•	librium flow				(0)	F¥0 - N. C. C. C. C. Star Manuscripped				
	(1)	remains same			2	(2)	increases				
	(3)	decreases				(4)	unpredictable				
174	The	Parson's reactio	n turhi	ne has							
1/4.	(1)	only moving bl		iic nas					7		
	(2)	only fixed blad			**						
		different shape		ad and mor	rina	blades					
	(3)								*		in.
	(4)	identical shape	OI IIX	ea ana mov	ing o	nades					
							arad ca			duon	in five
175.		isentropic entha						entropic	enthalpy	arop	in lixe
		0.4		0.56	•		0.67	(4)	1.67		
	. ,										
176.	The	cooling system	used f	or superson	ic ai	r crafts	and rockets is				3.0
	(1)	simple air cool				(2)	boot-strap air		g system		
	(3)	reduced ambie	-		em	(4)	regenerative	air cool	ing syster	n	
				*		16					
177.	The	capacity of a do	mestic	refrigerato	r is i	in the r	ange of				
	(1)	0.1 to 0.3 T	10			(2)	0.5 to 1.0 T				
	(3)	1 to 3 T				(4)	3 to 5 T				
						•.	C:				
178.		capillary tube is		sed in large	capa	icity re	irigeration sys	tems be	cause		101
	(1)	It is made of co	5.5%	med at							
	(2)	Capacity contr					9				
	(3)	required pressu	ire dro	p cannot be	ach	ieved					
	(4)	cost is too high	1				4				
				,							
						27-A					(ME

	are i	respectively				
	(1)	water and water		(2)	water and lithium b	romide
	(3)	ammonia and lithium b	romide	(4)	ammonia and water	2
		şi .			F Hotological	
180.	Que	uing theory is associated	d with			
	(1)	inventory (2)	sales	(3)	waiting time (4)	production time
			04		9	
181.	The	routing function in a pro	oduction system	desig	n is concerned with	
	(1)	manpower utilization		(2)	machine utilization	*
	(3)	quality assurance of the	e product	(4)	optimizing material	flow through the plant
		g 88 i	<i>*</i>			
		value engineering tech	nique in which	h exp	erts of the same rai	nk assemble for product
	(1).	brain storming		(2)	Delphi	5 A
	(3)	morphological analysis	3	(4)	direct expert compa	nrison
183.	The	type of organization pre	ferred for an au	tomob	oile industry	
	(1)	line organization		(2)	functional organizat	tion
	(3)	line and staff organizati	ion	(4)	line, staff and functi	onal organization
184.		mathematical technique mum manner is known a		best	use of limited resou	rces of a company in the
	(1)	value analysis		(2)	network analysis	
	(3)	queuing theory		(4)	linear programming	*
						(3)
185.		small scale industry the 0/- and sales price is Rs				riable cost per product is n per month will be
		300 (2) 4			500 (4)	70 Company (1987)
			2	8-A		(MEC)

179. In aqua-ammonia and lithium bromide - water absorption refrigeration systems, the refrigerants

							Set Code : T2
							Booklet Code : A
186.	Bin	eards are used in					
	(1)	machine loading (2)	quality control	(3)	stores	(4)	inventory
187.		ons is known as					g between various work
	(1).	flow chart (2)	process chart	(3)	travel chart	(4)	operation chart
188.	The (1) (3)	type of layout suitable product layout combination of produ	*		(2) process	100000	ayout
189.	The	forecasting technique	used for new pro	ducts	is		100
	(1)	Box Jenkins		(2)	Single expone	ntial sn	noothing
	(3)	Delphi type		(4)	simple regress	sion	
190.		sigma level of quality c			7 n 8 E		
15	(1)	2.1 defects per millio	n opportunities	(2)	-		on opportunities
	(3)	4.3 defects per millio	n opportunities	(4)	5.7 defects per	r millio	on opportunities
191	In in	ventory control theory	the economic o	rder d	uantity is		, 1
	(1)	average level of inven		(2)	1	ize	
	` '	capacity of a warehou		(4)		ondin	g to break-even analysis
		single dry plate clutch, coil springs (2)				(4)	clutch pedal
193.	The	torque converter uses	to tr	ansfe	r torque.		
	(1)	air			automatic tran	smissi	on fluid
	(3)	gears		(4)	steel belt		

29-A

(MEC)

							Set	Code :	T2
							Booklet	Code :	A
194	Ina	four wheel drive, the nu	mber of gear bo	xes ar	re.				
177.	(1)			(3)		(4)	4		** -e
	(1)	(2)	-	(5)		(- /			
195.	Ina	hydraulic power steerin	g system, the por	wer s	teering pump is	driven	by a		
	(1)	belt driven by camshaf	ì	(2)	chain driven by	crank	shaft		
	(3)	belt driven by drivesha	aft .	(4)	belt driven by	cranksl	naft		
							¥:		
196.	Whi	ch of the following para	meter can be ad	usted	l by modifying t	he tie-	rod attach	ment ler	ngth?
	(1)	camber (2)	caster	(3)	toe	(4)	steering	gear rati	io
						9			
197.	The	gudgeon pin connects							
	(1)	crankshaft and connec	ting rod	(2)	connecting rod	and p	iston		
	(3)	connecting rod and car	m shaft	(4)	piston and crar	ık shaf	t	×	
			19						
198.	The	function of antilock bra	ke system is that	t it			•		
	(1)	reduces the stopping d	istance				14 40		
	(2)	minimizes the brake fa	ide		***	v			
	(3)	maintains directional of	control during br	aking	by preventing t	he who	eels from	locking	
	(4)	prevents nose dives du	ring braking and	there	by postpones l	ocking	of the wl	neels	
			980						
199.	Odo	meter is an instrument u	used for measure	ment	of				
	(1)	power		(2)	fuel consumpti	ion			
	(3)	engine rpm		(4)	distance				
				15		12			
200.	The	problem caused by the v	wheel imbalance	is					
	(1)	hard steering and hard	ride						

(MEC)

(2) poor acceleration and hard steering

(3) steering wheel vibrations and uneven tyre wear(4) poor acceleration and reduced fuel efficiency